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Figure 1. Comparison with state-of-the-art methods on the real-world low-quality images. Previous GAN-based methods may overem-
phasize generation and hallucinate a face with unnatural face shapes or non-realistic face components. The integration of shape and gener-
ative prior allows us to achieve realistic restoration results.

Abstract

Blind face restoration, which aims to reconstruct high-
quality images from low-quality inputs, can benefit many
applications. Although existing generative-based methods
achieve significant progress in producing high-quality im-
ages, they often fail to restore natural face shapes and high-
fidelity facial details from severely-degraded inputs. In this
work, we propose to integrate shape and generative pri-
ors to guide the challenging blind face restoration. Firstly,
we set up a shape restoration module to recover reason-
able facial geometry with 3D reconstruction. Secondly, a
pretrained facial generator is adopted as decoder to gener-
ate photo-realistic high-resolution images. To ensure high-
fidelity, hierarchical spatial features extracted from the low-
quality inputs and rendered 3D images are inserted into
the decoder with our proposed Adaptive Feature Fusion
Block (AFFB). Moreover, we introduce hybrid-level losses
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to jointly train the shape and generative priors together with
other network parts such that these two priors better adapt
to our blind face restoration task. The proposed Shape
and Generative Prior integrated Network (SGPN) can re-
store high-quality images with clear face shapes and real-
istic facial details. Experimental results on synthetic and
real-world datasets demonstrate SGPN performs favorably
against state-of-the-art blind face restoration methods.

1. Introduction

Real-world low-quality face images suffer from un-
known degradations during acquisition and Internet trans-
mission. Blind Face Restoration (BFR) has been attracting
considerable attention [2, 44, 52] due to its wide applica-
tions in real-world scenarios, such as restoring old images
and film footage. However, it is still challenging to restore
a high-fidelity image with natural facial geometry and real-
istic facial details from severely degraded face images.



Previous works exploit different kinds of facial priors
to help face restoration, e.g., sparse constraints [6, 49, 54],
parsing maps [2, 3, 43] and facial landmarks [3]. Addition-
ally, the shape priors [15, 40] are adopted to guide face
deblurring and super-resolution. However, they only han-
dle specific image degradation, with over-smoothed results
missing details. The resolutions (256 [40] and 128 [15])
are relatively low compared to recent methods. Besides,
they first finetune the D3DFR [4] model on paired low- and
high-quality images in advance before training their deblur-
ring or super-resolution network. The finetuned model can
not produce accurate 3D reconstructions for those LQ im-
ages with extreme pose or severe degradation (see Fig. 3).

With the rapid progress of GAN-based high-quality face
generation [7, 20, 22], it is observed that the learned convo-
lution weights of generative networks are able to capture a
distribution over high-quality images [8, 34]. Such gener-
ative prior is adopted to produce visually realistic outputs
from extremely low-quality images [8, 32, 34]. GPEN [52]
and GFPGAN [44] further improve the fidelity by perform-
ing spatial modulation on the features of the embedded face
generator. Unfortunately, existing methods [44, 52] often
overemphasize generation and hallucinate faces with unnat-
ural facial components on severely-degraded images.

To address the challenges, we introduce a new blind
face restoration network designed to achieve a good balance
between face shape reconstruction and face detail genera-
tion. The proposed Shape and Generative Prior integrated
Network (SGPN) consists of two modules: 1) Face shape
restoration module. 2) The shape and generative prior inte-
gration module. To restore the inherent face structure, we
leverage a deep neural network (ResNet50 [13]) to predict
the coefficients of 3D morphable face models (3DMMs [1])
from the low-quality input. The rendered 3D image con-
tains natural and sharp face structures. The pretrained gen-
erator of StyleGAN2 [23] is adopted as our decoder to gen-
erate photo-realistic high-resolution image. We develop a
dual-branch encoder to extract hierarchical spatial features
from the low-quality inputs and its reconstructed result ren-
dered from the predicted 3DMM coefficients. The spatial
features are injected into the decoder progressively with a
dedicated Adaptive Feature Fusion Block (AFFB), which
learns a explicit weighting mask to adaptively fuse the spa-
tial features from the dual-branch encoder.

The whole networks including shape and generative
prior are jointly optimized with a combination of image-
and mesh-level objectives. Specifically, the image-level loss
favors pixel-level reconstruction and global realness, while
the mesh-level loss encourages the face shape recovery. Ex-
periments demonstrate that our method is able to recover
realistic facial details and natural face shapes. In addition,
our method can be easily generalized to face inpainting. In
summary, the contributions of our work are as follows:

• To combine the merits of face shape and generative
prior, we propose a blind face restoration framework
to integrate them seamlessly. Our SGPN with adaptive
feature fusion block achieves a good balance between
face shape reconstruction and face detail generation.

• The face shape and generative priors are jointly opti-
mized with other network parts to better facilitate the
blind face restoration task.

• Extensive experiments demonstrate that our method
achieves superior performance on both synthetic and
real-world low-quality images, along with good gener-
alization ability to face inpainting.

2. Related Work
Image Restoration. Image restoration has been a long-
standing research topic. In recent years, deep convolutional
neural networks have gained great success in large amounts
of image restoration tasks including denoising [10, 55], de-
blurring [24, 43], super-resolution [3, 48], inpainting [29,
53], and compression artifacts reduction [5, 9]. However,
most existing image restoration methods only consider a
specific degradation type. It is challenging to restore the
real-world low-quality images which contain complex un-
known degradations.
Blind Face Restoration. As an important branch of im-
age restoration, BFR has achieved great progress recently.
BFR aims to handle severely degraded face images in the
wild. One major line is the reference-based approaches.
GFRNet [28] and ASFFNet [27] leverage a warped high-
quality image to extract high frequency details for guiding
the image reconstruction. However, requiring high-quality
exemplar images limits the practical applicability. DFD-
Net [26] proposes to first generate deep dictionaries for fa-
cial components from high-quality images and then resort
to them for better recovery of fine facial details. Another
line is to adopt face generative networks [22, 23] to im-
prove the reconstruction quality. GAN inversion based tech-
niques [8, 32, 34] usually produce images with low fidelity
and are time-consuming. GPEN [52] and GFPGAN [44] de-
velop an encoder-decoder based architecture. They improve
the fidelity by performing spatial modulation on the features
of the embedded face decoder. Unfortunately, these genera-
tive prior based methods ignore recovering plausible facial
geometry structure and may hallucinate faces with unnatu-
ral facial components on severely-degraded images. In con-
trast, our method explores 3D facial structure information
from the low-quality inputs and integrates it with the gener-
ative prior to achieve natural face shape reconstruction and
realistic facial details generation.
Priors in Face Restoration. There are strong priors in hu-
man faces. It is a common practice to exploit facial priors
in face restoration. For example, facial semantic priors are
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(a) Overall Architecture (b) Adaptive Feature Fusion Block

Figure 2. The overall architecture of our proposed SGPN. (a) Our network contains the shape restoration module, and the shape
and generative prior integration module. (b) Adaptive feature fusion block as our basic generative GAN block. We employ image-level
reconstruction loss Lrec and adversarial loss Ladv to enhance fidelity and realness. Besides, we employ mesh-level 3D landmark loss
L3dlm and mesh loss Lmesh to enhance shape restoration.

leveraged through concatenating the degraded image and
semantic labels as input to the deep neural networks [3,43].
Furthermore, semantic features generated from a segmen-
tation network are adopted as guidance of the spatially-
adaptive normalization operation [35] for image inpaint-
ing [57]. However, these semantic priors extracted from
severely degraded images may be unreliable [44, 52] and
not able to provide detailed structure information. On the
other hand, 3D facial prior has been proven to effectively
capture the facial structure and applied in various facial
editing applications such as face swapping [46], face de-
blurring [40] and face super-resolution [15, 16, 30]. Specif-
ically, 3D coefficients representing identity, pose and ex-
pression are predicted first and fed into deep neural net-
works as guidance [15, 46]. Unfortunately, 3D facial prior
can not provide vivid textures and realistic facial details. In
recent years, several attempts [8, 32, 34, 44, 52] have been
proposed to utilize generative priors embedded in Style-
GAN [23]. Despite visually realistic outputs, they fail in
recovering plausible geometry structure for extreme poses
or heavy degradations. In summary, existing methods only
employ a specific facial prior and thus could not handle the
challenging blind face restoration perfectly. In this work,
we not only combine 3D face shape and generative prior,
but also propose a dedicated fusion module to make them
collaborate seamlessly and thus obtain satisfactory perfor-
mance. There are two reasons for using 3D prior: 1) It is
challenging to train a 2D parsing model, which is prone to
error for severely degraded images. 2) Although these 2D
priors provide global component regions, they can not pro-
vide the detailed edges, illumination or expressions.

3. Methodology
First, we describe the overall architecture of SGPN.

Then, we introduce the shape restoration module, and the
shape and generative prior integration module in detail. Fi-
nally, we present the model objectives.

3.1. Overview of SGPN

The overall architecture of SGPN is depicted in Fig. 2a.
Given a severely degraded low-quality image Ilq, our net-
work first applies a shape restoration module to recover rea-
sonable facial geometry with 3D reconstruction technique.
Following the practice of D3DFR [4], we regress 3DMM
coefficients with ResNet50, and then transform the coeffi-
cients to the face shape Ŝ and colored texture Ĉ. The 3D re-
constructions are further projected onto the 2D image plane
to obtain a rendered 3D image I3d. The 3DMM coefficients
and the rendered 3D image serve as the shape prior.

Besides, we utilize StyleGAN2 [23] as our generative
prior. We propose an integration module to combine these
two priors. Specifically, we employ a latent encoder to ex-
tract the latent vector zlq from LQ image. The 3DMM
coefficients z3d and the latent vector zlq are concatenated
together to generate intermediate latent code w for Style-
GAN2. The intermediate code is then broadcasted to all
GAN blocks to modulate the convolutional weights. The
LQ image Ilq and rendered 3D image I3d go through a dual-
branch encoder to generate multi-resolution spatial features
Flq and F3d, which will be further concatenated to the fea-
tures inside the GAN block. We propose an adaptive feature
fusion block to blend Flq and F3d adaptively, as shown in
Fig. 2b. Details will be elaborated in Sec. 3.3.
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Figure 3. Our method restores better shape than the original
D3DFR model [4] and the finetuned model [15] from LQ images.

3.2. Shape Restoration Module

ResNet-50 is leveraged to predict 3DMM coefficients,
illumination and face pose from the input LQ image Ilq.

z3d = FRes50(Ilq). (1)

The output is a vector z3d = (α,β, δ,γ,p) ∈ R257, where
α ∈ R80,β ∈ R64, δ ∈ R80,γ ∈ R27,p ∈ R6 repre-
sent the coefficients of the Basel Face Model (BFM) iden-
tity [37], expression [12], BFM texture, illumination with
Spherical Harmonics (SH) [38] and pose. For complete-
ness, we first review the 3D face reconstruction procedure.
3DMM Model. With predicted 3DMM coefficients, the 3D
face shape Ŝ and albedo texture T̂ are constructed as,

Ŝ = Ŝ(α,β) = S̄+Bidα+Bexpβ, (2)

T̂ = T̂(δ) = T̄+Btδ, (3)

where S̄ and T̄ are the mean face shape and albedo tex-
ture. Bid,Bexp and Bt denotes the PCA bases of identity,
expression and texture, respectively. Afterwards, Spherical
Harmonics lighting is utilized to produce realistic illumina-
tion. The real color texture Ĉ at vertex i is formulated as,

Ĉ(i) = ĉi(ni, ti,γ) = ti ·
27∑
b=1

γbΦb(ni), (4)

where ni and ti are the surface normal and albedo texture
at vertex i. Φb is the SH basis function. We refer the readers
to [4] for more details.
Renderer Model. With a differentiable mesh renderer, the
reconstructed 3D face can be projected onto the 2D image
plane according to the predicted face pose p,

I3d = Frender(Ŝ, Ĉ,p). (5)

Given a severely degraded LQ image, the pretrained
D3DFR can not provide accurate 3D reconstructions. The
methods [15, 40] finetune the D3DFR on the paired LQ-
HQ images. Instead, we joint train the shape restoration
module with other modules such that the shape prior better
adapts to our blind face restoration task. Besides, we intro-
duce constraints on the reconstructed 3D mesh directly with
mesh-level loss Lmesh. Specifically, the shape Ŝ and color
texture Ĉ should be close to Shq and Chq reconstructed

from HQ images. Details will be elaborated in Sec. 3.4.
As shown in Fig. 3, we can see that our method can restore
better shape than the original D3DFR model and finetuned
model [15] from the input LQ image. We also quantita-
tively measure the shape prediction accuracy of [4, 15] and
our method by the vertex distance between the constructed
meshes from LQ images and GT meshes from HQ images.
The errors are 0.0183, 0.0121, 0.0058, respectively, demon-
strating the superiority of our method.

3.3. Shape and Generative Prior Integration

The facial generative prior network is capable of gener-
ating high quality face image. A few attempts [8,32,44,52]
have been made to utilize StyleGAN as a facial prior to re-
store HQ images from LQ images. However, these methods
may suffer from producing images with low fidelity [8, 32]
and unnatural shapes [44, 52], given severely degraded LQ
images. In comparison, the aforementioned shape prior can
restore reasonable shapes from LQ images.

As shown in Fig. 2a, we propose a shape and generative
prior integration module to take advantage of their merit.
We first extract a latent vector zlq from LQ image. The
concatenation of 3D coefficients z3d and latent vector zlq
will be mapped to the intermediate latent space w ∈ W to
modulate the convolutional weights of StyleGAN,

zlq = Flatent(Ilq), (6)
w = Fmlp(z3d, zlq). (7)

We decrease the mapping network depth from 8 to 2, as
recommended by Karras et al. [21].

In order to produce high-fidelity and faithful restorations,
we condition the generative model on the spatial features
Flq and F3d extracted from Ilq and I3d. We note that the
rendered 3D image can provide sharp face structures. How-
ever, the 3DMM can not reconstruct inner mouth areas, eyes
or accessories (i.e. sunglasses) on the face. One example
is shown in Fig. 4. We propose an Adaptive Feature Fu-
sion Block (AFFB) to adaptively fuse Flq and F3d. Fig. 2b
shows the detailed structure of AFFB. At resolution scale i,
we first generate a spatial mask,

F i
inter = StyleConv(F i

GAN |w), (8)

M = Conv1×1(F
i
inter, F

i
lq, F

i
3d), (9)

where the operation StyleConv denotes the style convo-
lution in StyleGAN. More details can be found in [23]. The
generated spatial mask has the same size with F i

lq and F i
3d.

The 1 × 1 Conv is followed by a sigmoid activation such
that the mask values are between 0 and 1. The blended fea-
ture is formulated as:

F i
blend = F i

lq ·M + F i
3d · (1−M), (10)
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Figure 4. Visualization of learned spatial masks of AFFB.

We show the visualizations of the spatial mask by calcu-
lating the mean across the channel dimension. The visual-
izations at scale 128, 256 and 512 are presented in Fig. 4.
We can see that the sunglass regions have relatively higher
activations than the skin regions. It indicates that the LQ
spatial feature F i

lq contributes more to the sunglass regions
than the 3D spatial feature F i

3d. Since the mask is learned
without supervision, the background regions of F3d are hard
to be masked out completely for all channels.

3.4. Model Objectives

Recall that our SGPN includes the following trainable
parts, 3DMM coefficients prediction model FRes50, latent
encoder Flatent, mapping network Fmlp, spatial feature en-
coder Fenc, and generative blocks Fgan.

Our learning objectives can be divided into two cate-
gories: 1) Image-level losses, and 2) mesh-level losses.
Image-level Losses: We adopt the widely-used L1 loss as
our reconstruction loss:

Lrec = ∥Î − Ihq∥1, (11)

where Î and Ihq denote the generated result and the HQ
image. Adversarial loss is inherited from StyleGAN2,

Ladv = EÎ log
(
1 + exp

(
−D(̂I)

))
, (12)

where D is the discriminator.
Mesh-level Losses: We use pretrained D3DFR to predict
3D mesh from Î and Ihq . The constructed mesh contains
∼35.7K vertices, from which we extract 68 pre-defined 3D
landmark points [41]. Landmark loss is formulated by:

Llm =
1

68

68∑
i=1

∥L̂(i)− Llm(i)∥2, (13)

where L̂ and Llm denote the 3D landmarks predicted from
Î and Ihq , respectively.

Predicting an accurate 3D reconstruction from a LQ im-
age is non-trivial. We introduce mesh loss Lmesh to better
adapt the shape prior to our BFR task. We re-use the pre-
trained D3DFR to predict the shape Shq and color texture
Chq from Ihq . The mesh loss enforces Ŝ and Ĉ to be close
to Shq and Chq at all vertices,

Lmesh =
1

N

N∑
i=1

∥Ŝ(i)− Shq(i)∥2 + ∥Ĉ(i)−Chq(i)∥2,

(14)

where i denotes the vertex index. The overall loss L is:

L = Lrec + λadvLadv + λlmLlm + λvtLvt. (15)

where λadv = 1, λlm = 100 and λvt = 100.

4. Experiments
4.1. Datasets and Implementation

Training Datasets. We utilize FFHQ dataset [22], which
consists of 70, 000 high-quality images, to train our SGPN.
All images are resized to 5122 during training. To build
training data, the low quality images are synthesized from
the HQ images with the following degradation model [28]:

ILQ = ((IHQ ⊗ k)↓r + nσ)JPEGq . (16)

The high quality image is first convolved with blur kernel
k, which includes Gaussian blur with standard deviation
ϱ ∈ {0 : 0.1 : 5} and 32 motion blur kernels from [26].
Downsampling scale r, additive white Gaussian noise inten-
sity σ, and JPEG compression quality factor q are randomly
sampled from {1 : 20}, {0 : 10} and {30 : 70}, respec-
tively. The real image degradations usually become more
complicated after several Internet transmissions. Inspired
by [45], we repeat the degradation process one or two times
randomly to obtain the final LQ image.

Implementation Details. We pretrained the D3DFR [4]
and StyleGAN2 with 5122 resolution [23] as our face shape
and generative prior. The spatial feature encoder consists
of seven down-sample convolutional layers. In practice,
the encoders for Ilq and I3d share the same weights. Dur-
ing training, the training data is augmented with horizontal
flip. We adopt the Adam optimizer with a batch size of 32
for a total of 400K iterations. The learning rate was set to
0.002 for all trainable parameters. We implement our mod-
els with PyTorch [36] framework and the differentiable ren-
derer with PyTorch3D [39]. The training time was 2 days
with 8 Tesla V100 GPUs.

Inference Speed. The network parameters and inference
speed on Tesla V100 of our method and other SOTA meth-
ods are reported in Tab. 1. Our inference time includes three
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Figure 5. Visual comparison of Blind Face Restorations (BFR). Our SGPN is able to restore reasonable face shapes and details.

Bicubic HiFaceGAN [50] DFDNet [26] PSFRGAN [2] GPEN [52] GFPGAN [44] SGPN GT

Figure 6. Visual comparison of Face Super-Resolution (FSR). The ground truth HQ image is firstly downscaled and then upscaled to
the original resolution with bicubic interpolation to synthesize LQ images. The scale factor is 16×.

Table 1. Parameters and inference speed on Tesla V100.

Method DFDNet PSFRGAN GPEN GFPGAN
Ours

FRes50 Frender FG

Params (M) 228.99 63.89 25.02 59.96 22.92 - 28.39
Inference Time (s) 0.8327 0.0759 0.0542 0.0556 0.0094 0.0256 0.0570

Table 2. Quantitative comparison on CelebAHQ-Test for BFR.
Red and blue indicates the best and the second best result.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ Shape ↓
Bilinear 24.20 0.6690 0.6051 129.22 19.1081

HiFaceGAN [50] 23.54 0.5990 0.4345 75.63 13.6619
DFDNet [26] 23.07 0.5775 0.3556 25.08 1.6315

PSFRGAN [2] 23.07 0.6035 0.3232 24.29 0.3842
GPEN [52] 22.93 0.6048 0.2929 13.34 0.2891

GFPGAN [44] 22.06 0.5894 0.3119 20.21 0.6346
Ours 23.10 0.6146 0.2698 7.21 0.1667
GT ∞ 1 0 6.51 0

parts: 3DMM coefficients prediction FRes50, the rendering
process Frender and image generation FG. The whole pro-
cedures can be completed in 0.092s, comparable to other
SOTAs but with better face shape and details restoration.

4.2. Experiments on Synthetic Dataset

We use the CelebAHQ [19] test partition to simulate LQ
images, which contains 3, 000 images. The widely used

PSNR, SSIM [47] and LPIPS scores [56] are adopted to
evaluate the restoration quality. FID score [14] is also re-
ported. It should be noted that there is a domain gap be-
tween FFHQ dataset and CelebAHQ dataset. Therefore, we
use the remaining CelebAHQ train partition as the refer-
ence data to evaluate FID score. We also report the shape
error. For fair comparison, we use another 3D face recon-
struction method RingNet [42] to regress the FLAME coef-
ficients [25] from the result image and GT. The shape error
is computed by L2 distance of the regressed coefficients.

We quantitatively compare our SGPN with state-of-the-
art face restoration methods, including HiFaceGAN [50],
PSFRGAN [2], DFDNet [26], GPEN [52] and GFP-
GAN [44]. Their official released models are adopted in the
experiments. The comparisons are conducted in two tasks,
i.e., blind face restoration and face super-resolution.

Blind Face Restoration. Following the degradation model
illustrated in Sec. 4.1, testing LQ images are synthesized for
evaluation. The quantitative results are shown in Tab. 2. It
can be seen that our SGPN achieves significantly better re-
sults on LPIPS and FID scores, showing that the outputs are
closer to the original HQ images distribution. Our model
achieves comparable PSNR and SSIM scores to other com-
peting methods. It should be noted that the PSNR and SSIM
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Figure 7. Visual comparison of real face restorations. Our SGPN is able to restore natural face shapes and details.

Table 3. Quantitative comparison on CelebAHQ-Test for face super-resolution.

Method
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ Shape ↓

8x 16x 32x 8x 16x 32x 8x 16x 32x 8x 16x 32x 8x 16x 32x
Bilinear 26.93 23.93 21.03 0.7325 0.6710 0.6241 0.4677 0.5850 0.6461 109.71 135.96 190.77 0.0944 0.9132 76.9403

HiFaceGAN [50] 26.24 23.45 20.93 0.6918 0.6141 0.5821 0.2275 0.4218 0.5995 13.27 55.66 187.19 0.0524 0.7395 71.2096
DFD [26] 24.62 22.81 20.72 0.6103 0.5569 0.5654 0.2518 0.3507 0.5495 11.57 26.83 90.76 0.0570 0.4158 15.5578

PSFRGAN [2] 25.06 22.91 20.25 0.6667 0.6037 0.5382 0.2437 0.3069 0.3967 14.02 19.65 43.68 0.0704 0.2211 0.8777
GPEN [52] 25.07 23.09 20.39 0.6666 0.6135 0.5539 0.2230 0.2845 0.3648 12.82 16.36 29.78 0.0607 0.1803 0.9005

GFPGAN [44] 24.72 21.96 19.47 0.6684 0.5922 0.5254 0.2164 0.2730 0.3800 11.02 15.22 32.49 0.0584 0.1801 0.7570
Ours 25.37 23.35 20.61 0.6805 0.6286 0.5740 0.2062 0.2610 0.3480 9.59 10.45 16.88 0.0513 0.1474 0.5293
GT ∞ ∞ ∞ 1 1 1 0 0 0 6.51 6.51 6.51 0 0 0

are not correlated well with human perceptions when there
are severe degradations, because the BFR methods aim to
hallucinate realistic face details (e.g., clear eyes and teeth)
that do not exist in the LQ images.

Fig. 5 shows the qualitative comparison between our
SGPN and other state-of-the-art methods. Most compet-
ing methods fail to restore realistic faces from severely de-
graded images. Among them, GPEN generates better re-
sults. However, it produces distorted face shape (first row)
and eyes (second row). In comparison, our SGPN restores
reasonable face shapes and visual-realistic facial details.

Face Super-Resolution. Following the common practice
in SR tasks, the LQ images are synthesized with bicubic
downsampling. FSR experiments are conducted under three
scale factors, 8×, 16× and 32×, respectively. The low-
resolution images are resized back to the original resolu-
tion with bicubic interpolation before passing through the
face restoration models. The quantitative results are listed
in Tab. 3. We can see that the bicubic interpolation al-
ready achieves the best PSNR and SSIM. However, it can-
not restore any meaningful facial details as shown in Fig. 6.
SGPN achieves the best LPIPS and FID scores under all
three scale factors. Fig. 6 presents the visual comparison
for scale factor 16×. Our SGPN manages to generate better
face shapes at large poses thanks to the carefully designed
combination of shape prior and generative prior.

Table 4. Quantitative comparison on real face restoration.

Method DFDNet [26] PSFRGAN [2] GPEN [52] GFPGAN [44] Ours
FID ↓ 30.17 29.65 26.64 24.07 22.94

NIQE ↓ 4.394 4.021 3.860 3.712 3.644

4.3. Experiments on Images in the Wild

The ultimate goal of BFR methods is to restore low-
quality faces in the wild. We collected LQ images from
CelebA [31], WIDERFACE [51] and LFW [17] for testing,
forming 1, 247 test images. FID [14] and NIQE [33] are
adopted as the non-reference perceptual metrics. Since our
test images are mainly from CelebA, we use the whole Cele-
bAHQ dataset as reference to calculate FID. The quantita-
tive comparisons are shown in Tab. 4. Our SGPN achieves
superior performance on both FID and NIQE.

Fig. 7 presents the visual comparisons. From the first
row, we can see that our SGPN can restore better face details
than the competing methods. Other methods can not gen-
erate natural mouth shape in this challenging case. In the
second row, GPEN generates unnatural smiles and can not
hallucinate complete glasses. In comparison, shape prior
can provide reasonable face shape information. Then, our
generative network can put more effort into restoring facial
details including glasses on the face. As a result, SGPN can
restore visually better smiles and clearer glasses.
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Figure 8. Visual comparison between variants of SGPN.

Table 5. Comparison of different variants of SGPN.

method
A B C

Full Model
w/o F3d w/o AFFB w/o L3dlm,Lmesh

FID ↓ 24.36 23.42 24.63 22.94

Table 6. Quantitative comparison on face inpainting.

method
Mask Ratio

10% 20% 30% 40% 50%
GPEN [52] 31.05/0.0143 27.33/0.1825 25.84/0.2017 24.27/0.1985 23.30/0.2696

CTSDG [11] 32.28/0.0113 30.43/0.0443 28.28/0.1478 26.44/0.1682 25.80/0.2769
SGPN 34.61/0.0061 31.89/0.0360 29.07/0.0631 27.40/0.1393 26.19/0.1422

4.4. Ablation Studies

To evaluate the effectiveness of our proposed SGPN, we
conduct experiments on three variants of our method. Vari-
ant A (w/o F3d) represents removing the encoder branch for
3D images. Only spatial feature Flq is concatenated the fea-
tures in the GAN block. Variant B (w/o AFFB) represents
removing the adaptive feature fusion block. The encoded
spatial features Flq and F3d are directly added rather than
adaptively fused. Variant C (w/o L3dlm,Lmesh) denotes re-
moving mesh-level losses during training. The finetuned
D3DFR model [15] is used to construct 3D images.

The FID metrics on the real test images of A, B, C and
our full model are listed in Tab. 5. Fig. 8 shows one BFR
example. Without the shape prior, the edge of the face gen-
erated by model A protrudes unnaturally. On the other hand,
model B generates unwanted freckles on the cheek. Model
C produces apparently worse results. Our full model has
none of the above flaws. From the above observations, it
can be inferred that the shape prior helps regularize face
structures. The AFFB block allows our model to adaptively
condition on Flq and F3d to synthesize realistic textures.
The mesh-level loss enforces the shape prior to better adapt
to our blind face restoration task.

Masked Input GPEN [52] CTSDG [11] SGPN GT

Figure 9. Visual comparison with SOTA inpainting methods.

4.5. Extension to Face Inpainting

Besides blind face restoration, our method can be eas-
ily generalized to face inpainting. The shape prior can be
used to guide face inpainting. We use the public-available
QD-IMD [18] masks to draw irregular holes on the FFHQ
dataset to synthesize training pairs. We compare with state-
of-the-art face inpainting methods, including GPEN [52]
and CTSDG [11]. We conduct testing with different mask
ratios on the CelebAHQ dataset. Larger mask ratio means
that more pixels are erased. The quantitative comparisons
are shown in Tab. 6. Our SGPN achieves better perfor-
mance at all mask ratios. Fig. 9 presents the qualitative
comparisons. We can see that there are still visible strokes
in GPEN result. On the other hand, CTSDG performance
suffers from low resolution. In comparison, our model re-
trieves better high-quality faces.

5. Conclusion
In this paper, we propose a novel approach for blind face

restoration through integrating face shape and generative
priors. The shape restoration module first predicts the pa-
rameters of 3DMMs from the low-quality observation and
then renders a new facial image which exhibits accurate fa-
cial structure information. After that, the shape and gener-
ative prior integration module combines the priors seam-
lessly with adaptive feature fusion block. Moreover, the
face shape and generative priors are jointly optimized with
other network parts such that these two priors better adapt
to our blind face restoration task. Extensive experiments on
both synthetic and real-world benchmarks demonstrate that
the proposed SGPN is superior to existing face restorations
methods in terms of face shape and texture recovery.
Limitations. Our model relies on 3DMM model [4] to re-
store the face shape. Better 3D face model and 3D face
reconstruction network may further improve the restoration
quality. Besides, SGPN mainly focuses on facial part and
may overlook the background region restoration.
Societal Impact. The identity information is actually dif-
ficult to restore from completely degraded images. The re-
stored faces might not have the same identity as the severely
degraded inputs although 3D prior is used.
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