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Exemplar-Based Image and Video Stylization Using
Fully Convolutional Semantic Features

Feida Zhu, Zhicheng Yan, Member, IEEE, Jiajun Bu, Member, IEEE, and Yizhou Yu, Senior Member, IEEE

Abstract— Color and tone stylization in images and videos
strives to enhance unique themes with artistic color and tone
adjustments. It has a broad range of applications from profes-
sional image postprocessing to photo sharing over social net-
works. Mainstream photo enhancement softwares, such as Adobe
Lightroom and Instagram, provide users with predefined styles,
which are often hand-crafted through a trial-and-error process.
Such photo adjustment tools lack a semantic understanding of
image contents and the resulting global color transform limits
the range of artistic styles it can represent. On the other hand,
stylistic enhancement needs to apply distinct adjustments to
various semantic regions. Such an ability enables a broader range
of visual styles. In this paper, we first propose a novel deep
learning architecture for exemplar-based image stylization, which
learns local enhancement styles from image pairs. Our deep
learning architecture consists of fully convolutional networks for
automatic semantics-aware feature extraction and fully connected
neural layers for adjustment prediction. Image stylization can be
efficiently accomplished with a single forward pass through our
deep network. To extend our deep network from image stylization
to video stylization, we exploit temporal superpixels to facilitate
the transfer of artistic styles from image exemplars to videos.
Experiments on a number of data sets for image stylization as
well as a diverse set of video clips demonstrate the effectiveness
of our deep learning architecture.

Index Terms— Image stylization, fully convolutional networks,
color transform.

I. INTRODUCTION

STYLISTIC enhancement adjusts an image or video for
enhancing artistic styles that convey unique themes.

Unlike conventional image enhancement focusing on fix-
ing photographic artifacts (under/over exposure, insufficient
contrast, etc.), stylistic enhancement involves dramatic color
and tone adjustments to achieve distinctive visual effects.
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For example, the X-PRO II filter from mobile photo App Insta-
gram expresses a wistful mood by simulating the cross
processing procedure of photographic films. Professional
image editing software (such as Adobe Lightroom) and social
mobile Apps (such as Instagram) provide users with prede-
fined styles, which are often hand-crafted through a trial-and-
error process. An example of learning semantics-aware photo
adjustment styles is shown in Figure 1.

Conventional automatic photo adjustment has difficulty in
representing complex color transforms between images before
and after adjustment. Most of them merely model global
color transforms without considering local semantic contexts.
Although more sophisticated adjustments introduce spatially
varying effects according to local image statistics, they still
lack a semantic understanding of image contents. On the
contrary, professional photographers often manually enhance
images in a semantics-aware manner. For instance, when
enhancing photos to create a nostalgic theme, photographers
might apply more exaggerated adjustments to a photo of
Broadway taken in year 1950 than a photo of Burj Khalifa,
which is the tallest skyscraper built in year 2010, as the former
is more fitting with the theme. At a local scale, they employ
selection tools to isolate semantic regions (faces, buildings,
etc.), which are enhanced with distinct sets of adjustments.
For instance, there may exist a demand to apply exaggerated
adjustments to foreground objects to help them stand out. The
ability of applying distinct adjustments to semantic regions
enables a broader range of visual styles.

As stylistic adjustments interact with image semantics and
contexts in a complicated manner, it is extremely challenging
to manually define the relationships between them. To auto-
matically learn stylistic enhancement from a small set of image
exemplars, in this paper, we propose a novel deep learning
architecture. Unlike existing work that integrates hand-crafted
features with a small-scale multilayer neural network [1],
our solution is a large-scale deep network. It consists of
fully convolutional networks (FCNs) for automatic feature
extraction and fully connected neural layers for adjustment
prediction. Recently, fully convolutional networks [2]–[4] have
proven to be efficient and powerful deep learning architectures
for image processing and visual understanding tasks, such as
semantic image segmentation, contour detection and salient
object detection, that need to generate high-resolution outputs.
In our deep network, feature maps with sufficiently large
receptive fields are computed to model contexts. We fur-
ther employ fully connected neural layers, which predict
color transforms according to contexts and pixel features.
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Fig. 1. An example of learning semantics-aware photo adjustment styles. Left: Input image. Middle: Manually enhanced by photographer. Distinct adjustments
are applied to different semantic regions. Right: Automatically enhanced by our deep learning model trained from image exemplars. (a) Input image.
(b) Ground truth. (c) Our result.

We seamlessly integrate the FCNs with fully connected layers,
and an input image can be enhanced with a single forward pass
in our deep network.

Furthermore, our deep learning model trained on image
exemplars can be readily deployed to enhance videos with
artistic styles. Compared with image stylization, video styl-
ization faces extra challenges. Simply enhancing a video in
a frame-by-frame manner not only results in an inefficient
solution, but also cannot preserve the temporal coherence.
Instead, we adopt temporal superpixels (TSPs) [5], which are
spatiotemporal primitive regions consistently tracking image
regions and object parts across frames. In our video stylization
pipeline, a color transform is predicted for each TSP and
applied to all pixels within the same TSP. To accelerate com-
putation, features are only extracted for a minimum number
of video frames intersecting all TSPs.

In summary, this paper has the following contributions.
• We propose a novel deep learning architecture for stylistic

image enhancement. It consists of fully convolutional
networks and fully connected neural layers. Our deep
network is capable of learning distinct enhancement styles
from a small set of training exemplars. Enhancing a novel
image only requires a single forward pass through our
network.

• Fully convolutional networks in our architecture extracts
global features and contextual features. Our novel contex-
tual features have two parts. The first part is a semantics-
aware feature extracted from deep layers of a fully
convolutional network; the second part consists of a set
of color histograms over a small spatial grid.

• We demonstrate that deep neural networks trained with
image exemplars can be used to enhance videos as
well. We segment a video into temporal superpixels,
and apply both temporally coherent and spatially smooth
adjustments to them. A greedy frame selection algorithm
is developed to reduce the computational cost of feature
extraction.

II. RELATED WORK

A. Image Enhancement

On the basis of whether example data is used, image
enhancement approaches can be broadly classified into
two categories, hand-crafted approaches and data-driven

approaches. Hand-crafted filters for image enhancement are
commonly seen in image processing softwares and photo man-
agement Apps, such as Adobe Lightroom, Google Photos and
Instagram. They support a range of adjustments, from exposure
correction, contrast enhancement to artistic retouching. Mean-
while, researchers have made an enormous amount of effort to
develop fully automatic methods for tone adjustment [6], [7],
color management [8], [9], detail manipulation [10]–[12] and
image smoothing [13]–[15]. On the other hand, interactive
enhancement techniques allow users to perform adjustments
at sparse locations, and propagate them to the full image
domain [16], [17] while preserving image structures.

In contrast to hand-crafted approaches, which merely
achieve a predefined set of effects, data-driven approaches are
capable of learning new effects from examples, and thus offer a
more flexible set of adjustments. They replace time-consuming
manual design with automatic model learning [18]–[20].
Bychkovsky et al. [21] predict global tonal adjustments using
a Gaussian process regression model built from a large dataset
of images. Their regression model only extracts image global
features and does not accommodate semantics-aware local
adjustments. Kang et al. [22] introduce user preference in
image global enhancement, and retouch a novel image by
finding most similar examples in a database and transferring
their tone and color adjustments. Joshi et al. [23] retouch
imperfect personal photos by leveraging existing high-quality
photos of the same person. Lee et al. [24] develop an unsu-
pervised technique for learning content-specific style rankings
and transfers highly ranked styles from exemplars to an input
photo. However, their styles are still limited to global color
and tone transforms. Wang et al. [25] approximate complex
spatially varying tone and color adjustments with piecewise
polynomial functions, which rely on low-level image statistics
only and are not aware of image semantics. In contrast, our
model applies adjustments to local semantic regions using
features extracted with a deep convolutional neural network
pretrained on thousands of semantic categories. Shih et al. [26]
synthesize images associated with different times of day by
learning locally affine models after locating a matching video
within a time-lapse video database. Gatys et al. [27] perform
image style transfer using convolutional neural networks.
A new image is synthesized by matching the coarse structures
of a content image and the texture features of a style image.
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The work closely related to ours is presented in [1], where
local tone and color adjustments are predicted using a combi-
nation of image global statistics, contextual semantic features
and pixelwise color and spatial features. They rely on exist-
ing computationally expensive scene parsing [28] and object
detection [29] tools to explicitly generate a semantic label
map, from which contextual features are formed by multiscale
spatial pooling. These scene parsing and object detection tools
have limited accuracy and robustness. Our method in this paper
does not rely on explicit scene labeling, instead, perform scene
understanding implicitly by extracting contextual semantic
features using a fully convolutional network, which offers
higher accuracy and improved robustness, and also runs faster
than traditional scene understanding tools.

B. Video Enhancement

Traditional professional video editing softwares (Adobe
After Effects, Nuke, etc.) offer a suite of predefined operations
with tunable parameters that apply common global adjust-
ments (exposure/color correction, white balancing, sharpening,
denoising, etc). Local adjustments within specific spatiotem-
poral regions are usually accomplished with masking layers
created with intensive user interaction. Both parameter tuning
and masking layer creation are labor intensive processes.

Example-based approaches have been proposed to automat-
ically transfer adjustments from exemplars to novel videos,
and alleviate the needs of user interaction. Bonneel et al. [30]
propose to transfer the color palette of an example video to a
novel input video to achieve color grading. However, they rely
on users to provide foreground-background segmentation for
estimating separate color transforms. In contrast, our approach
is fully automatic and implicitly distinguishes semantic regions
from each other by using deep features from convolutional
neural networks. Xue et al. [31] study the relationships
between film tags (director, emotion, etc.) and color styles
for movie color grading. Their method is solely dependent
on low-level image statistics (luminance, hue and saturation),
and is not able to support semantics-aware local adjustments.
Ruder et al. [32] extend [27] to video stylization by proposing
a temporal loss term between frames to maintain temporal
coherence.

III. OVERVIEW

Given a set of exemplar image pairs, each representing a
photo before and after pixel-level color and tone adjustments
following a particular style, we wish to learn a computational
model that can automatically adjust a novel input photo in
the same style. We still cast this learning task as a regression
problem as in [1]. For completeness, let us first review their
problem definition and then present our new deep learning
based architecture and solution.

We seek a color transformation function φ such that, for
every pixel pi in the exemplar images, the color trans-
form returned by φ is φ(θ, xi ), which maps the pixel color
at pi before adjustment, ci = [Li ai bi ]T (CIELab color
space), to its corresponding pixel color yi after adjustment.
Here θ denotes the model parameters and xi the feature

vector at pixel pi . The quadratic color basis V (ci ) =
[L2

i a2
i b2

i Li ai Li bi ai bi Li ai bi 1]T is used to absorb high-
frequency pixelwise color variations. The product of the color
transform φ(θ, xi ) and the color basis is a prediction of the
enhanced color. Since our color space has 3 channels and the
quadratic color basis is a 10-dimensional vector, φ(θ, xi ) is in
fact a 3x10 matrix. The model parameters of θ are learnt by
minimizing the following objective function, which measures
the squared differences between the predicted and groundtruth
enhanced colors.

arg min
θ

∑

i

||φ(θ, xi )V (ci ) − yi ||2 (1)

Since each color transform is a matrix with 30 elements,
solving a distinct color transform at every pixel is an under-
constrained problem. To sufficiently constrain every color
transform, we group pixels in an image into a predefined
number of superpixels, {sv }Ns

v=1, and let all pixels within a
superpixel sv share a single color transform Fv = φ(θ, xv ).

Thus, the above objective function is revised as follows.

arg min
θ

∑

v

∑

j∈sv

||φ(θ, xv )V (c j ) − y j ||2. (2)

Refer to [1] for more details.

A. Photo Stylization Using FCNs

In this paper, we model the entire process to produce an
enhanced image using deep neural networks. The complete
architecture of our deep network is shown in Figure 2. Our
deep network makes use of fully convolutional networks to
extract global and contextual semantic features for every super-
pixel in the input image. The global feature of a superpixel is
the globally pooled deep CNN feature. And the pixel feature
is simply the pixel color at the centroid of the superpixel.
As shown in Figure 3, the contextual feature of a superpixel
consists of three components. The first two components are
deep CNN features extracted over two differently sized recep-
tive fields centered at the centroid of the superpixel. The
third component is a set of concatenated color histograms
computed over a 3x3 grid also centered at the centroid of
the superpixel. Let us now explain the architecture of our
deep network and how we compute these features in greater
details.

An input image is fed into a fully convolutional net-
work (FCN). Deep features extracted using this FCN pass
through a global pooling layer and become a single global
feature vector xg . We replicate x g at the centroids of all
superpixels in a replication layer to obtain per-superpixel
global features {xg

v }v (Section IV-A). We also upsample the
input image, and feed the original and upsampled images into
two FCNs to extract two feature maps. The receptive fields of
these two feature maps respectively have the same size as the
two (blue) windows in Figure 3. These feature maps represent
semantic contexts at two different scales, and are sampled
at the centroids of superpixels in a sampling layer to obtain
contextual semantic features {xs1

v }v and {xs2
v }v (Section IV-B).

We compute contextual color histogram features {xh
v }v over

two-scale pooling regions (red grid in Figure 3) in a color
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Fig. 2. The architecture of our deep neural network for stylistic image enhancement.

Fig. 3. Contextual feature descriptors. There are both semantic features
and color histogram features in our contextual feature description. Two-scale
contextual semantic features are extracted from the two large blue windows
using a fully convolution network while color histogram features are extracted
from 9 + 1=10 pooling regions over a 21 × 21 window.

histogram layer (Section IV-B). The global feature, contextual
semantic features, contextual color histogram feature as well
as the pixel feature for every superpixel are concatenated and
passed through two fully connected neural layers to produce
the set of per-superpixel color transforms {φ(θ, xv )}v . Each of
these color transforms is applied to the per-pixel color basis
vectors {V (ci )}i in the same superpixel in an enhancement
layer to produce the final enhanced image.

1) Global Pooling Layer: Given an incoming feature map
{ fx,y,c} of size H × W × C , a global pooling layer performs
average pooling over the full spatial domain to compute a

global feature vector xg =
∑

x
∑

y fx,y,c

H×W .
2) Replication Layer: This layer replicates the input feature

vector x g with C dimensions at the centroid of every super-
pixel and produces a feature map {xg

v } of size Ns × C .

3) Sampling Layer: Given a feature map of size H ×W ×C ,
this layer samples a feature vector at the centroid of
every superpixel and assembles them into a feature map of
size Ns × C .

4) Color Histogram Layer: This layer computes a con-
textual color histogram feature with D dimensions at the
centroid of every superpixel. These color histogram features
are assembled into a feature map of size Ns × D. The details
of contextual color histogram computation are elaborated
in Section IV-B.

5) Enhancement Layer: This layer predicts the enhanced
colors at all pixels within every superpixel sv . For each
pixel p j in sv , if the original color at p j is c j , the enhanced
color is computed as the product of the predicted color
transform φ(θ, xv ) and the quadratic color basis vector V (c j ).

6) Discussion: Inspired by the design of feature descrip-
tors in [1], we use the combination of the global feature,
contextual features and the pixel feature to predict the color
transform. However, there exist significant differences between
our features and those in [1]. While various types of low-
level image statistics (e.g. intensity distritbuion, scene bright-
ness, equalization curves) are used as image global features
in [1], our global feature is computed with a global pooling
layer which spatially averages deep features from the last
convolutional layer of a fully convolutional network. The
resulting global feature is shown to be discriminative with
respect to the semantics of image contents (e.g. an indoor
portrait vs. an outdoor landscape) [33]. We use t-SNE [34]
to compute a two-dimensional embedding of global features.
This embedding arranges images with similar global features
close to each other in a plane. A visualization of the resulting
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Fig. 4. Visualization of global feature where images are displayed exactly
at their embedded location.

spatial layout is shown in Figure 4. To form a contextual
feature descriptor for representing the local surrounding of a
superpixel, Yan et al. [1] rely on a traditional scene parser [28]
to label background image regions, and a set of cascaded
object detectors [29] to detect and classify foreground objects
into a small set of predefined categories. By merging scene
parsing results and object detections into a semantic label
map, they compute label histograms using a multiscale spatial
pooling scheme. However, both the scene parser and the object
detectors they use have been substantially outperformed by
recent deep CNN models [2], [3], [35], [36]. Furthermore,
in contrast to the continuous deep CNN features used in our
contextual features, their category-oriented discrete label map
is more prone to quantization errors, which can lead to severe
artifacts in the final results.

Moreover, compared to our fully convolutional network
with an efficient GPU implementation, the scene parser and
object detectors they use are at least one order of magnitude
slower, and cannot be seamlessly integrated with their multi-
layer Perceptron network. In contrast, our entire deep network
performs photo stylization in an end-to-end manner without
any external dependency.

B. Video Stylization

To make our deep network trained on image exemplars per-
form video stylization, we choose to represent the video with
temporal superpixels (TSPs) [5] (Section VI-A). TSPs pay
particular attention to the temporal dimension, and explicitly
model the motion flow between frames in a probabilistic
generative framework. As a result, they can track image
regions and object parts over a period of time.

To exploit the tracking ability of TSPs in maintaining the
temporal coherence in the enhanced video, we associate each
TSP with a single color transform (Section VI-B). To reuse our
trained deep network for predicting per-TSP color transforms,
we can project a TSP onto video frames to obtain a sequence of
temporally adjacent superpixels. As described in Section III-A,
we could predict color transforms associated with those

superpixels and aggregate them to obtain the per-TSP color
transform. Since each TSP only needs one color transform, it is
not necessary to predict a color transform for every projected
superpixel. To minimize the number of frames used for feature
extraction, we propose a greedy algorithm to choose a small
set of representative frames. In Section VII, we empirically
demonstrate that this technique clearly reduces the computa-
tional cost without compromising the visual quality.

IV. FEATURE DESCRIPTION

An image is decomposed into a set of superpixels with
the graph-based segmentation algorithm in [37], and we seek
to predict a single color transform φ(θ, xv ) for every super-
pixel sv using the feature vector xv described in this section.
This feature vector consists of three components, namely the
global feature, the contextual feature and the pixel feature.

A. Global Features

The overall image content affects how professional photog-
raphers adjust the image. We employ a fully convolutional
network to extract image global features. FCN is introduced
in [2] for semantic image segmentation. It can be set up
by transforming a convolutional neural network (CNN). The
CNN can be pretrained on a large-scale dataset for image
classification, such as ImageNet [38], to learn discriminative
feature representations, which are generically useful for a set
of related tasks [39]–[41]. We take the VGG-16 network [42]
pretrained on ImageNet images from 1000 object categories.
This network consists of 5 groups of convolutional lay-
ers (conv1-conv5), 5 pooling layers (pool1-pool5) and 2 fully
connected layers (fc6 and fc7). We replace layers fc6 and fc7
with new convolutional layers conv6 and conv7 while kernel
parameters in conv6 and conv7 are copied from fc6 and fc7,
respectively. An input image of size H ×W ×3 is sent into this
FCN and a feature map of size H g × W g × 4096 is extracted
from the deepest layer conv7 which has a sufficiently large
receptive field of size 224×224. The spatial dimensions of the
feature map is reduced by a factor of 32 due to the 5 pooling
layers. Thus H g = H

32 , and W g = W
32 . We perform global

average pooling to obtain a 4096D global feature, whose
dimensionality is further reduced to 200 using PCA to prevent
overfitting during the network training stage. The resulting
200D feature xg

v is replicated at the centroids of all superpixels.

B. Contextual Features

As photographers apply spatially varying adjustments to
various regions in a photo according to the local contents
and their appearances in these regions, we introduce semantic
features over two different scales and color histogram features
to differentiate among local contexts.

1) Semantic Features: Apart from the FCN taking the input
image in its original size to extract the global feature, two more
FCNs with identical weights are used to extract contextual
semantic features. On the basis of the FCN used for global
feature extraction, we make two crucial modifications to the
two FCNs used here. First, we reduce the stride of pooling
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Fig. 5. Dilated convolution. Top: The spatial resolution of feature maps
is reduced by half after a max-pooling operation with stride 2, and the
subsequent 3 × 3 convolution is not dilated (i.e. dilation = 1). Bottom: The
stride of max-pooling is reduced to 1. The spatial resolution is preserved and
the convolution is dilated to have input stride 2 (i.e. dilation = 2).

kernels in layers pool4 and pool5 from 2 to 1, and thus the
spatial resolution of feature maps is not reduced across these
layers. As a result, the overall spatial resolution is merely
reduced by a factor of 8. Feature maps with high spatial
resolutions have been shown to be vital in attaining superior
performance in image processing tasks [2], [43]. Changing
the kernel stride at a pooling layer alone makes the following
convolutional layer have a different receptive field and extract
meaningless features. We use dilated convolution [44] to
increase the input stride of feature maps for layers conv5 and
conv6 by factors of 2 and 4 respectively to compensate the
change of pooling kernels in pool4 and pool5 (Figure 5).
We further fine-tune this transformed VGG16 network on
the Places2 scene classification dataset [45], which makes
deep features produced by conv7 more discriminative across
different semantic regions.

Second, besides extracting semantic features at the original
image resolution, we also upsample the input image by a
factor of 2 and feed the upsampled image into one of the
aforementioned FCNs to extract features from the conv7 layer,
the size of whose receptive field is reduced from 224×224 to
112 × 112. This two-scale scheme is better suited for context
modeling. To ensure meaningful features are extracted at
image boundaries, we apply 112-pixel wide reflection padding
to the upsampled images. Finally, if an input image of size
H u×W u ×3 is sent into any of these modified FCNs, a feature
map of size Hu

8 × W u

8 × 4096 is extracted from layer conv7.
To prevent overfitting, the 4096D feature at each pixel of this
feature map is reduced to a 800D feature using PCA. Thus,
at the centroid of every superpixel, there are two concatenated
contextual features, which are respectively sampled from the
nearest pixels in layer conv7 of these two FCNs. Thus, every
superpixel has a 1600D contextual semantic feature.

2) Color Histogram Features: To represent the appearances
of local contents, we also compute a color histogram feature
by performing two-scale spatial pooling over a grid of cells,
as illustrated in Figure 3. Inspired by spatial pyramid pool-
ing [46], we place a 3 × 3 grid of cells at the centroid of
every superpixel. For each channel in the CIELab color space,
we compute a histogram over each of the 9 cells, each of

which has 7 × 7 pixels, as well as over their bounding box,
which has 21×21 pixels. Such spatial pooling makes our local
color histograms more robust to spatial deformations. We use
32 bins in each histogram and concatenate all histograms into
a 960D feature vector.

Due to the relatively large spatial extent of the grid used for
histogram computation, color histograms for a superpixel near
an object or region boundary may be heavily influenced by
pixels on the other side of the boundary. Such color histograms
can mislead our deep network to apply incorrect adjustments
to the superpixel and further give rise to halo artifacts, espe-
cially when pixel colors on both sides of the boundary have
significant differences. We mitigate this problem by altering
pixel weights during histogram binning. Specifically, before
computing color histograms at the centroid of a superpixel,
the weight associated with a pixel in the aforementioned grid
is set to the following bilateral coefficient,

wi = e
|ci −cv |2

σc e
|pi −pv |2

σp ,

where cv and pv respectively denote the color and location
of the centroid, ci and pi respectively denote the color and
location of the pixel, and σc and σp represent the esti-
mated standard deviations of colors and distances respectively.
We further normalize all pixel weights and use such weights
during histogram binning afterwards.

C. Pixel Features

Pixel colors represent high-resolution spatial variations.
We represent pixel colors in the CIELab color space. The
pixel feature of a superpixel is simply the 3D pixel color at
the centroid of the superpixel.

V. EXPERIMENTAL RESULTS ON IMAGE STYLIZATION

A. Experimental Setup

As shown in Figure 2, we employ FCNs to extract image
global features and contextual semantic features. All the
features of a superpixel are concatenated and fed into a deep
neural network with one input layer, two fully connected
hidden layers, and one output layer. The number of neurons in
the hidden layers are set empirically to 256, and the number
of neurons in the output layer are set equal to the number
of coefficients in the predicted color transform. Since we use
quadratic color transforms, there are 30 neurons in the output
layer, 10 for each of the three color channels.

At the training stage, only the weights associated with the
fully connected layers are updated with the classic error back-
propagation algorithm. In practice, each image is segmented
into around 7000 superpixels, from each of which 10 pixels
are sampled. Therefore, even if we only have 50 example
image pairs for learning one specific style, the total number
of training samples is still as large as 3.5 million. Such a size
of the training set can largely eliminate the risk of overfitting.
It typically takes a few hours to finish training the deep neural
network on a training dataset with hundreds of image pairs.
At the testing stage, we still segment each image into around
7000 superpixels and the features extracted for each superpixel
at its centroid are shared among all pixels within the same
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TABLE I

MEAN PER-PIXEL L2 DISTANCES BETWEEN INPUT IMAGES AND

GROUNDTRUTH ADJUSTED IMAGES AND MEAN PER-PIXEL
L2 TESTING ERRORS BETWEEN AUTOMATICALLY ADJUSTED

RESULTS AND GROUNDTRUTH RESULTS

superpixel. The enhanced result of a novel testing image can be
computed in just one forward pass through our deep network.
It takes around 25 seconds to enhance an image 512-pixel
wide.

B. Results on the Uniform Dataset

Here we report image stylization results from our deep
network on the Uniform dataset introduced in [1]. This dataset
includes 115 images and three local enhancement styles. In the
following, we briefly review these three styles.

The first style, “Foreground Pop-out”, increases the con-
trast and color saturation of foreground objects while decreas-
ing the color saturation of background. In general, this
style makes the foreground objects more salient and color-
ful while deemphasizing the background. The second style,
“Local Xpro”, is more complex compared to the previous
effect. It generalizes the popular “cross processing” effect
in a local manner. When creating this style, a photographer
first defined multiple profiles in Photoshop, each of which
is specifically tailored for a subset of semantic categories.
All the profiles share a common series of operations, such
as hue/saturation adjustment and brightness/contrast manip-
ulation. Nonetheless, each profile defines a distinct set of
adjustment parameters tailored for its corresponding semantic
categories. Although the profiles roughly follow the “cross
processing” style, the choice of local profiles and additional
minor image editing operations were heavily influenced by
the photographer’s personal taste which can be naturally
learned through exemplars. The third style, “Watercolor”,
gives viewers artistic impressions. It creates “brush” effects
over the input image. All pixels inside the region covered
by a single brush stroke share the same color. This mimics
the “watercolor” painting style. This style also gives rise to
complex spatially varying color adjustments.

We have trained our deep network to learn all three styles
from this dataset. As in [1], for each style, 70 images are
used for training and the remaining 45 images are used for
testing. Fig 6 shows some testing results in these three styles.
We have calculated the mean per-pixel L2 distance in the
CIELab color space between our enhanced images and the
groundtruth results as well as between the input images and
the groundtruth results. They are shown in Table I. We also add
a baseline which is the L2 distance between the ground truth
and the result obtained with per-image best global quadratic
color transform. It provides the theoretical lower error bound
for image adjustment using a global quadratic color trans-
form. Our method can achieve even lower numerical errors,

which indicates the importance of spatially-varying local color
transforms.

In this paper, we primarily compare our method against the
one proposed by Yan et al. [1] under the same experimental
setting. This is because the method in [1] is the most recent
work capable of performing local semantics-aware color and
tone stylization. It has been demonstrated in [1] that their
method outperforms all other earlier relevant techniques. Com-
parison of numerical errors on testing images are shown in the
fourth and fifth columns of Table I. Our method achieves lower
numerical errors on all the three local enhancement styles.

In addition to lower numerical errors, our method achieves
clearly higher visual quality for the following reasons. First,
their contextual feature is based on a label map generated
from a scene parser [28] and object detectors [29], which
tend to make unreliable discrete labeling decisions while our
method avoids such discrete decisions by using continuous
deep features. Therefore, their enhanced results are more
likely to have artifacts due to incorrect labeling. One such
example from the Foreground Popout style is shown in Fig 7,
where ‘sea’ is mislabeled as ‘mountain’ with their method
and the saturation of this mislabeled region is incorrectly
increased. Second, their method requires the definition of a set
of semantic categories. When this set is limited (20 categories
used in [1]), their contextual feature would not work well
on testing images containing object categories beyond this
predefined set. In addition, the limited number of categories
also limits the effectiveness of their feature. Another example
from the Foreground Popout style is shown in Fig 8, where
the saturation of ‘building’ is not increased with their method
even though it is labeled correctly. In contrast, our FCN
based architecture extracts contextual features without using
a category set and is more robust. The color of the ‘building’
region is correctly adjusted with our method.

Another comparison has been conducted against the method
proposed by Wang et al. [25], which tries to approximate
complex spatially varying tone and color adjustments with
piecewise polynomial functions based on low-level image
statistics. Our method relies on more powerful features, which
not only include low-level image statistics such as color his-
tograms but also high-level contextual semantic information.
An example is shown in Fig 9, where we can see that our
enhanced result is much closer to the ground truth.

C. Effectiveness of Semantic and Color Histogram Features

Our contextual feature consists of two parts: semantic fea-
ture and color histogram feature. In this subsection, we demon-
strate the importance of these individual features as well as
their integration in our method.

We conduct experiments using four different contextual fea-
ture combinations, including concatenated semantic and color
histogram features, semantic feature alone, color histogram
feature alone and no contextual feature at all. The mean
per-pixel L2 testing errors in the CIELab color space are
summarized in Table II. Without using any contextual features,
the testing errors are 10.10, 9.76 and 8.45 on the Foreground
Pop-out, Local Xpro and Watercolor styles respectively. These
errors drop to 8.75, 8.45 and 7.72 respectively after adding
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Fig. 6. Examples of local photo adjustment styles. First column: Input image. Second column: Ground truth. Third column: Our result.
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Fig. 7. Comparison with the method in [1] on an example from the
Foreground Popout style. Their method mislabels ‘sea’ as ‘mountain’ and the
saturation of this mislabeled region is incorrectly increased. In contrast, our
method produces much more robust visual results by using deep contextual
and global features extracted using fully convolutional networks.

Fig. 8. Comparison with the method in [1] on another example from the
Foreground Popout style. Although their method labels the ‘building’ region
correctly, it still adjusts its color incorrectly, which reveals the limitation of
their feature description. In contrast, our features give rise to an enhanced
image closer to the ground truth.

semantic features and drop to 8.68, 8.60 and 7.66 respectively
after adding color histogram features. These results numer-
ically indicates the importance of these individual features.
Moreover, the testing errors can be further reduced to 7.14,
7.19 and 6.78 after integrating these two features together,
which indicates the necessity of using both features in our
method.

We also provide an example of visual comparison
in Figure 10. This example is from the Foreground Popout
style. In this example, ‘person’ is classified as foreground and
‘sky’ and ‘sea’ are classified as background. We can see that
the result obtained using both semantic and color histogram
features is visually closer to the groundtruth result than those
obtained using one type of contextual features only.

Bilateral Weights in Color Histogram Features:
Here we verify the effectiveness of bilateral weights in

color histogram features. A comparison of enhanced results
with and without using bilateral weights are shown in Fig 11.
We can see that there are obvious halo artifacts around
heads and shoulders when bilateral weights are not used,
and such artifacts are suppressed when bilateral weights are
used.

Fig. 9. Comparison with the method in [25] on an example in the Local
Xpro style. Our enhanced result is visually closer to the manually enhanced
ground truth.

TABLE II

COMPARISON OF MEAN PER-PIXEL L2 TESTING ERRORS ACHIEVED
WITH DIFFERENT COMBINATIONS OF CONTEXTUAL SEMANTIC

AND COLOR HISTOGRAM FEATURES

Fig. 10. Comparison of visual results produced with different combinations
of contextual semantic and color histogram features.

Let us take a closer look at the color histograms at
three sample points, pb (blue), pg (green) and pr (red),
in the top images of Fig 11. When bilateral weights are not
used (Fig 11(a)), the color histogram at pg can be seen as a
blended version of color histograms at pb and pr since pg

is close to a region boundary. However, pg actually belongs
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Fig. 11. Histograms of channel ‘a’ in the CIELab color space at three
pixels (‘blue’, ‘green’ and ‘red’) in the top image are shown in the bottom
with corresponding colors. Note that the histogram at pixel ‘green’ looks more
similar to that of pixel ‘blue’ after bilateral weights have been incorporated.
(a) Histogram w/o bilateral weights. (b) Histogram with bilateral weights.

Fig. 12. Average testing error with respect to the number of training images.

to the ‘sky’ region, and adjustments applied to pg should be
similar to those applied to pb. After using bilateral weights,
we can see that the color histogram at pg looks more similar
to the color histogram at pb, and it is likely that similar
adjustments will be applied to both of them.

D. Number of Training Images

In the previous section, we use a fixed number of training
and testing images as in [1] for fair comparison. To further ver-
ify the learning ability of our deep network, here we compare
the performance of models obtained with different numbers of
training images. The Uniform dataset has 115 images, from
which 25 images are randomly selected as testing images.
Then, we conduct a series of experiments which randomly
choose an increasing number (50, 60, 70, 80 and 90) of images
from the remaining images as the training set. We repeat each
experiment in this series three times each using a different
subset of randomly chosen images for training. The average
testing error of the three trials with respect to the number
of training images is shown in Fig. 12, where we can see
that our network can achieve better performance with more
training images. This is reasonable since larger training sets

Fig. 13. Examples of global ‘Spring’ and ‘Cold’ styles. Left: Input image.
Middle: Ground truth. Right: Our result.

exhibit more content diversity and give rise to more accurate
predictions of color transforms.

E. Global Styles

Our deep network can readily learn global image adjustment
styles as well. We asked a photographer to create additional
stylistic effects which are saved as “action” files in Photoshop,
each of which contains a series of operations such as saturation
adjustment, tone adjustment, and curve tuning. An “action”
is globally applied to the original images in the Uniform
dataset [1] to form a set of image exemplars for a global
enhancement style. It is also convenient for us to obtain from
the Internet various stylistic “action” files shared by photo
retouching enthusiasts. Here we demonstrate model training
and testing for two global effects as examples.

The first global effect (called “Spring”) gives viewers the
feeling of vitality, and the second global effect (called “Cold”)
tends to make a photo look vintage. Fig 13 shows enhancement
examples in these two styles. The mean per-pixel L2 distance
between the original images and their groundtruth enhanced
images reaches 16.95 and 18.56 for the “Cold” and “Spring”
styles, respectively. This indicates that these two effects make
significant color changes to the original images. The testing
errors of our trained models for these two styles are 1.88 and
4.13 respectively, which numerically demonstrates the strength
of our method in learning such global effects. Comparing the
middle column and the right column in Fig 13, we can see
that the enhanced results from our model look nearly the same
as the ground truth.

VI. VIDEO STYLIZATION

Our deep network trained on image exemplars can be
extended to enhance artistic styles in videos as well. Naive
video stylization in a frame-by-frame manner ignores the
temporal coherence between adjacent frames, and is also
inefficient. Therefore, we seek a more compact video repre-
sentation to facilitate video stylization.

A. Temporal Superpixels

To generalize 2D superpixels used in image stylization
for the purpose of video stylization, it is tempting to adopt
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the graph-based segmentation algorithm for decomposing a
video into 3D supervoxels [47]. However, without explicitly
modeling motions in a video, supervoxels cannot track image
regions and object parts, and temporal coherence is hardly
guaranteed. To overcome this difficulty, we represent a video
as a set of temporal superpixels (TSPs), which are inferred
from a probabilistic generative model explicitly considering
motion flows between frames [5]. Moreover, TSPs are more
uniform than supervoxels, which make them better suited for
tracking image regions in a temporally coherent manner.

B. Frame Selection

A TSP can be projected onto video frames as a sequence of
temporally adjacent 2D superpixels. As in image stylization,
a single color transform is predicted for every TSP, and applied
to all pixels within the TSP during video stylization. As a
result, we only need to choose one 2D superpixel from the
aforementioned sequence of projected superpixels. Our FCN
can extract features at the centroid of this chosen superpixel
and predict its color transform by processing the video frame
containing this superpixel. The predicted color transform can
then be used for enhancing all the pixels within the TSP.

On the basis of the above analysis, to reduce the computa-
tional cost, we seek to minimize the total number of video
frames processed by the FCN while ensuring at least one
of every TSP’s projected 2D superpixels is included in the
processed frames. We develop an iterative frame selection
algorithm to solve the above problem in a greedy manner.
At the beginning of our algorithm, all TSPs are unlabeled.
During each iteration, we first choose the video frame inter-
secting the largest number of unlabeled TSPs, and then label
these intersected TSPs. This process is repeated until all TSPs
have been labeled. The resulting list of chosen frames will be
processed by our FCN. In Section VII, we will demonstrate
the advantage of our frame selection algorithm in the context
of video stylization.

C. Guided Spatial Smoothing

Within each TSP, we only extract features and predict a
color transform for one of the projected 2D superpixels, and
the resulting color transform is used for enhancing all pixels
in the TSP. This strategy works well in terms of maintaining
temporal coherence. Nonetheless, for two spatially adjacent
TSPs, if their chosen 2D superpixels for feature extraction do
not lie on the same video frame, the extracted features as well
as the predicted color transforms of these superpixels may not
have spatial coherence and blocky artifacts may appear in the
enhanced video.

To address this problem, we apply guided bilat-
eral filtering [13] to predicted color transform coeffi-
cients. As Figure 15 shows, to obtain smoothed color
transform coefficients for a superpixel p1 in a video
frame f , we first identify its immediately neighboring
superpixels in the frame. The smoothed color transform
coefficients φ

f
1 for superpixel p1 in frame f are com-

puted with the following equation, φ
f

1 = ∑
i w1iφi , where

φi denotes the predicted color transform coefficients at the

TABLE III

COMPARISON OF MEAN PER-PIXEL L2 TESTING ERRORS

OF OUR METHOD AND THE FRAME-BASED METHOD

i -th neighboring TSP,

w1i = exp
|ci − c1|2

σc
exp

|pi − p1|2
σp

represents the bilateral weight computed using the original
input image as the guidance, and ci , pi are the color and
position at the centroid of the i -th neighboring superpixel.

VII. EXPERIMENTAL RESULTS ON VIDEO STYLIZATION

A. Datasets and Statistics

For testing our video stylization algorithm, we train image
enhancement models for five styles using our proposed deep
network. These five styles include three local styles (Local
Xpro, Foreground Pop-out, and a new local style called
“Golden”) and two global styles (Cold and Spring). The
local style Golden is created by applying distinct stylistic
adjustments to three types of semantic regions, namely natural
objects, man-made objects, and sky regions. Natural objects
include trees, land, mountains, people, etc. while man-made
objects include buildings, cars, etc. Unlike the Local Xpro
effect, where different adjustment profiles share a common
series of operations and only differ in adjustment parameters,
the Golden effect has distinct adjustment operations for each
type of semantic regions. For example, the operations for
natural objects include channel mixer and color curve tuning
while the operations for man-made objects include gradient
mapping and brightness/contrast manipulation.

We apply each of five enhancement styles to a set of five
testing videos named “Fly”, “Mountain”, “City”, “Railway”
and “Motor”. Each groundtruth stylized video is produced by
manually applying local profiles to individual video frames
independently. The mean per-pixel L2 distance in the CIELab
color space between original frames and groundtruth enhanced
frames over all videos for each style is 8.25, 4.74, 6.05,
6.33 and 6.87, respectively, as shown in Table III. Once our
trained models have been applied to the videos, the mean
per-pixel L2 distance between automatically enhanced frames
and groundtruth enhanced frames drops to 3.19, 2.68, 1.60,
0.60 and 1.51, respectively. This numerically confirms the
effectiveness of our overall video stylization approach based
on models trained from images.

Fig 14 shows an example frame chosen from “City”. We can
see that our enhanced frames in the aforementioned five
styles are visually similar to the groundtruth enhanced frames.
A real challenge in video stylization is maintaining temporal
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Fig. 14. Enhanced Local Xpro, Foreground Pop-out, Golden, Cold and Spring styles at a single frame from the “City” video. Middle row: Ground truth.
Bottom row: enhanced result from our video stylization algorithm.

Fig. 15. Neighboring superpixels of a superpixel (labeled as ‘1’) in a video
frame. These neighboring superpixels are used in guided bilateral filtering of
color transform coefficients within a single video frame.

coherence, which is one of the strengths of our proposed video
stylization algorithm. Complete enhanced videos in these five
styles can be found in the supplemental materials.

B. Effectiveness of TSP-Based Video Stylization

The most straightforward way to enhance a video using
our learned model simply considers the video frames as
independent images and enhance these frames individually.
This implies that superpixels within each frame are also
generated independently. In this paper, this approach is called
the frame-based method. To demonstrate the effectiveness of
our proposed video stylization algorithm, we compare our
method against the frame-based method in terms of both
numerical accuracy and visual quality. For numerical accuracy,
we compute the mean per-pixel L2 testing error between
enhanced results and the ground truth for the five styles.
As shown in the third and fourth columns of Table III,
the numerical accuracy of our method only differs slightly

TABLE IV

COMPARISON OF THE NUMBER AND PERCENTAGE (IN PARENTHESES) OF

CHOSEN FRAMES AT TWO LEVELS OF TSP GRANULARITY. RUNTIME

IS SHOWN IN THE LAST TWO COLUMNS

from that of the frame-based method. However, as expected,
the frame-based method cannot preserve temporal coherence,
and the enhanced videos from our method have significantly
higher visual quality. A visual comparison between enhanced
videos from our method and those from the frame-based
method can be found in the supplemental materials.

We also compare the computational cost between our
method and the frame-based method. Taking the video “Fly”
as an example which has 129 frames, the frame-based method
would need 3225 seconds since each frame takes 25 seconds.
The processing time of our video stylization algorithm is sig-
nificantly shorter because we do not have to extract features at
all superpixels in all frames. The feature of a TSP is extracted
only once in one of the selected frames and the computed
quadratic color transform is shared among all pixels within the
same TSP. In addition, we do not need to compute semantic
feature maps for those unselected frames. The running times
for video stylization are shown in Table IV.

The TSP algorithm [5] has parameters to control the approx-
imate number of superpixels in each frame. To verify the
effectiveness and flexibility of our frame selection scheme,
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Fig. 16. Two failure cases. Top row: Local Laplacian filter [7] is used to
increase image details exaggeratedly. Our result produces insufficient detail
increasement. Bottom row: One test result of Foreground Pop-out effect,
which has color artifacts marked in the red box.

we produce TSPs at two scales, Seg_1000 and Seg_3000,
which indicates there are around 1000 and 3000 superpixels in
each frame. Table IV lists the number and percentage of frames
chosen by our frame selection algorithm when a video is seg-
mented at each of these two scales as well as the total number
of frames in each video. The computational cost of our method
decreases when the granularity of superpixels increases since
there are less TSPs needed to extract features and less mapped
frames needed to compute semantic feature map.

We also compare the mean per-pixel L2 testing error
between enhanced videos and the ground truth at these two
scales. At 3000 superpixels per frame, the mean per-pixel
L2 error is 3.19, 2.68, 1.60, 0.60 and 1.51 for the Local
Xpro, Foreground Popout, Golden, Cold and Spring styles,
respectively. The mean per-pixel L2 error only rises slightly to
3.27, 2.77, 1.65, 0.67 and 1.70 respectively at 1000 superpixels
per frame. This comparison indicates that the numerical error
will not increase significantly when we increase the granularity
of superpixels within a certain range to reduce computational
cost.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we have presented a novel deep learning
architecture for exemplar-based image and video stylization,
which learns local enhancement styles from image pairs.
Our deep learning architecture consists of fully convolutional
networks for automatic semantics-aware feature extraction
and fully connected neural layers for adjustment prediction.
Image stylization can be efficiently accomplished with a single
forward pass through our deep network. To extend our deep
network from image stylization to videos, we exploit temporal
superpixels to facilitate the transfer of artistic styles from
image exemplars to videos. Experiments on a number of
datasets for image stylization as well as a diverse set of video
clips demonstrate the effectiveness of our deep model.

A. Limitations

Our method has limitations. Detail manipulation is consid-
ered one type of image stylization. We use the local Laplacian
filter [7] to exaggerate image details in the Uniform dataset.
Such exaggerated results are used as training data for our

method. The top row of Fig. 16 shows our trained model
can only enhance details slightly but cannot achieve results
similar to the ground truth. The reason is that our method only
applies color transforms to individual pixels independently
while detail manipulation needs to adjust local contrast among
nearby pixels. The bottom row of Fig. 16 shows that if the
predicted color transform at a certain superpixel (highlighted
area) is incorrect, all the pixels within the same superpixel
will be adjusted incorrectly, which is another limitation of our
superpixel-based method.

B. Future Work

An interesting direction to extend this work of image and
video stylization is to solve this problem using an end-to-end
trainable network. That is we do not perform spatial subsam-
pling using superpixels on the semantic feature maps produced
by the fully convolutional networks. The fully connected layers
used for predicting color transforms can be replaced with
convolutional layers with 1 × 1 kernels. Such a network will
be able to make pixel-level predictions. However, since it has
a large number of parameters, overfitting can easily occur with
insufficient training data.
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